Al-Powered Cell Profiling Enables the Quantitative and Functional Evaluation of Therapies Targeting Muscle Disorders in Patient-Derived Myotubes

Oana Lorintiu, Bianca Freytag, Mélanie Flaender, Cécile Gaston, Kévin Bouchaud, Tiphaine Champetier, Antoine Martin, Eve Duchemin-Pelletier, Violaine Chapuis-Perrot, Pauline Poydenot, Joanne Young, Erwann Ventre, Béatrice Darimont, Luc Selig

MyoScreen™ Discovery Platform: Patient-derived primary myoblasts

Al-Powered Cell Profiling: Monitoring disease reversal with Health-Score™

A. Identify phenotypes that distinguish healthy and disease donors Al-powered cell profiling can be performed with diverse image markers: Dystrophin Disease drivers \rightarrow DMD Dystrophin-Proteins involved in Glycoprotein Complex disease-altered → DMD, DM1, LGMDs, muscle functions and others Disease-associated Nuclear RNA foci morphological → DM1, DM2 features

C. Optimization of cell profiling and profile generation for DMD Dystrophin-Glycoprotein Complex (DGC) Dystrophin expression and DGC assembly is impaired in - DGC assembly is critical for DMD therapy development DGC 1 DGC 2 - Identification of the α-SG Utrophin δ-SG optimal combination Utrophin Utrophin α-DG DGC proteins ဟ 0.90β-DG Utrophin Ö 0.85**-**– Pair1: Utrophin and α α-SG α-DG Sarcoglycan fluorescent β-DG α-SG 山 0.80δ-SG α-SG staining were chosen for δ-SG α-DG cell profiling based on α-SG Syntrophin highest F-score α-SG Dystrobrevin Dysferlin δ-SG - Generalization to a variety of phenotypes and Diseased donors morphologies - 15,000 replicates per phenotype - 5 healthy donors - 7 DMD donors with deletions in following exons: Exon 45-52

D. Effect of new plates and donors on F1-Score: Training data expansion

SVM model trained on a variety of phenotypes to improve robustness Goal: F-score > 0.95

Performance Improvement

- The addition of each plate to the training data consistently enhances separation on the unknown plate, steadily improving the F1-score

Initial Drop in Performance

- With the introduction of a new plate, there is a notable decrease in the F1score attributed to the emergence of new donors
- Convergence of F1-score after 8 plates

E. Quantify the phenotypical response of disease donors to therapy

Analysis of treated disease donors

Quantify the number of myotubes that have recovered healthy-like phenotype through treatment

Health-Score = % phenotypically healthy myotubes out of total

F. Applications for Al-powered cell profiling

- Al-powered cell profiling assays are cell-based functional assays that quantify the ability of therapies to reverse disease phenotypes in patient-derived cells using a Health-Score
- Profiling of phenotypic features does not require knowledge of disease mechanism of action
- Al-powered cell profiling assays serve all stages of drug discovery/development

Al-Powered Cell Profiling

 Disease reversal Efficacy - Biomarker ID Specificity MOA - GMP-compliant potency assay Patient stratification 	Target ID & Validation	Lead Candidate ID/OP Selection	Pre-clinical Development De	Clinical evelopment Market	
		Efficacy	Biomarker	potency assay – Patient	

Health-Score assessment in muscle disorders

#3

DM1

DMD

The Health-Score calibrates the response of cells to loss of dystrophin Healthy Donor 1 Exp 1

skipping therapy than patient 2

- RNAi-induced downregulation of DMD in healthy donors

neuro-muscular

in the middle of

myotubes

junctions at the tip and

- Cells with dystrophin levels <20% display a disease phenotype - Cells with dystrophin levels >60% display a
- healthy phenotype
- Aligns with results from animal studies

The Health-Score assesses the activity of restored dystrophin after oligo-mediated exon 45 skipping in patient-derived cells

more active

0.90 0.85 MBNL1 FOCI

DM1

Labeling myotubes for DMPK foci/MBNL1 segregates healthy and DM1 donors CTG report Muscle

Disease	Donor	Sex	Age	Form	size (blood)	weakness	Myotonia	
Healthy		F	20	-	5-37	-	-	+ low ++ moderate +++ severe
DM1	DM1-1	М	27	Infantile	1300	+	++	
	DM1-2	М	38	Juvenile	350	++	+++	
	DM1-3	М	34	Late onset	300	None	None	
			c .					-

ASO treatment of DM1 donors restores a phenotypically healthy phenotype

- Al-powered cell profiling of DM1 donors monitoring DMPK foci/MBNL1 - DM1 donors differ in their sensitivity to the ASO treatment

Conclusions

- MyoScreen enables the development of novel quantitative and functional cell-based assays
- In particular, the Al-powered cell profiling assays
- are robust, versatile assays that can be applied to human primary cells or immortalized cells lines with diseaseassociated phenotypes
- serve various stages from drug discovery and development, to potency assays for commercial release of gene therapy products
- can be applied to High Content Screening and batch release testing
- Al-powered cell profiling assays can be exploited for
- evaluating the efficacy of therapies aiming to restore the activity of a disease driver
- analyzing the responses of different patients to a therapy
- Al-powered cell profiling will enable drug discovery for disorders with complex genetic backgrounds, multifactorial mechanisms, or unidentified mode of action, such as metabolic myopathies

Contact us: olorintiu@cytoo.com

Acknowledgment

We thank Dr Jack Puymirat and Dominic Jauvin from the CHU Québec for DM1 donor cells and CBC Biotec, Lyon, France, for the DMD and healthy donor cells