J. Cell Biol. 2011;193(5):917–933.
The CYTOOchip is a 19.5x19.5 mm coverslip with micropatterns transferred by photolithography on a high quality and low fluorescence borosilicate glass. The CYTOOchips are compatible with all inverted microscopes. Grid coordinates are printed on the underside of the chip and enable the user to return to the exact same cell/micropattern over time. These chips represent an ideal choice for high-resolution live cell imaging when combined with CYTOOchambers.
J. Cell Biol. 2011;193(5):917–933.
Proc. Natl. Acad. Sci. U.S.A. 2012;109(5):1506–1511.
J Cell Biol. 2014 Apr 14;205(1):83-96. doi: 10.1083/jcb.201311104. Epub 2014 Apr 7.
Cell. 2013; Aug 15 [epub ahead of print].
Mol Biol Cell. 2015 Mar 1;26(5):859-73. doi: 10.1091/mbc.E14-06-1086. Epub 2015 Jan 7.
Nat Methods. 2014 Jun 29. doi: 10.1038/nmeth.3016
J Biomol Screen. 2013; Aug 16 [epub ahead of print].
Biomaterials. 2013; Dec 04 [epub ahead of print].
PLoS Genet. 2015 Mar 24;11(3):e1005063. doi: 10.1371/journal.pgen.1005063. eCollection 2015.
Aging Cell. 2014 Dec;13(6):1028-37. doi: 10.1111/acel.12265. Epub 2014 Sep 9.
Nat Commun. 2014 May 7;5:3743. doi: 10.1038/ncomms4743.
Methods Mol Biol. 2014;1172:115-23. doi: 10.1007/978-1-4939-0928-5_10.
Proc. Natl. Acad. Sci. U.S.A. 2006;103(52):19771–19776.
PLoS One. 2014 Aug 21;9(8):e103895. doi: 10.1371/journal.pone.0103895. eCollection 2014.
Dev. Cell. 2011;21(6):1171–1178.
Molecular Cell - 27 February 2014
Cancer Res. 2011;71(1):134–142.
Mol. Biol. Cell. 2012; Dec 05 [epub ahead of print].
J Cell Biol. 2012;198(6):1011-1023.
Cell Motil. Cytoskeleton. 2006;63(6):341–355
J. Cell Biol. 2010;191(2):303–312.
Nature. 2015 May 25. doi: 10.1038/nature14429.
J. Cell Biol. 2010;191(2):233–236.
Neuroscience. 2015 Jan 22;284:311-24. doi: 10.1016/j.neuroscience.2014.09.070. Epub 2014 Oct 6.
Methods in Cell Biology.Vol Volume 118. Methods for Analysis of Golgi Complex Function. Academic Press; 2013:105–123.
Methods in Cell Biology. Vol 115. Academic Press; 2013:97–108.
Nat. Cell Biol. 2012;14(3):311–317.
J Cell Sci. 2014 Oct 1;127(Pt 19):4292-307. doi: 10.1242/jcs.154864. Epub 2014 Jul 29.
Cell. 2013;154(2):391–402.
J Cell Biol. 2012;199(1):97.
Dev Cell. 2012;23(6):1153–1166.
Biophys J. 2014 Jun 3;106(11):2340-52. doi: 10.1016/j.bpj.2014.04.036.
Nature. 2007;447(7143):493–496.
Nature Communications 5, Article number: 5240 doi:10.1038/ncomms6240
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17164-9. doi: 10.1073/pnas.1414106111. Epub 2014 Nov 17.
Plos One. 2012;7(8):e40864.
PLoS ONE. 2012;7(8):e40864.
Adoption of spheroids within high-content screening (HCS) has lagged behind high-throughput screening (HTS) due to issues with running complex assays on large three-dimensional (3D) structures.
To enable multiplexed imaging and analysis of spheroids, different cancer cell lines were grown in 3D on micropatterned 96-well plates with automated production of nine uniform spheroids per well. Spheroids achieve diameters of up to 600 µm, and reproducibility was experimentally validated (interwell and interplate CVdiameter <5%). Biphoton imaging confirmed that micropatterned spheroids exhibit characteristic cell heterogeneity with distinct microregions. Furthermore, central necrosis appears at a consistent spheroid size, suggesting standardized growth. Using three reference compounds (fluorouracil, irinotecan, and staurosporine), we validated HT-29 micropatterned spheroids on an HCS platform, benchmarking against hanging-drop spheroids. Spheroid formation and imaging in a single plate accelerate assay workflow, and fixed positioning prevents structures from overlapping or sticking to the well wall, augmenting image processing reliability. Furthermore, multiple spheroids per well increase the statistical confidence sufficiently to discriminate compound mechanisms of action and generate EC50 values for endpoints of cell death, architectural change, and size within a single-pass read. Higher quality data and a more efficient HCS work chain should encourage integration of micropatterned spheroid models within fundamental research and drug discovery applications.
ACS Nano, 2014, 8 (3), pp 2033–2047 Publication Date (Web): February 2, 2014
Cell Rep. 2013;Oct 17 [epub ahead of print].
J Vis Exp. 2010;(46):pii: 2514.
Sci Rep. 2015 Feb 11;5:8389. doi: 10.1038/srep08389.
Pflugers Arch. 2011;462(1):75–87.
PLoS ONE. 2012;7(5):e36894.
Neoplasia. 2012;14(8):771–777.
FASEB J. 2012;26(6):2592–2606.
PLoS ONE. 2013;8(2):e56231.
Nat. Cell Biol. 2011;13(9):1040–1050.
Nat Cell Biol. 2015 May;17(5):678-88. doi: 10.1038/ncb3157. Epub 2015 Apr 20.
Small GTPases. 2013;4(2).
Mol Biol Cell. 2015 Mar 1;26(5):859-73. doi: 10.1091/mbc.E14-06-1086. Epub 2015 Jan 7.
J Mol Biol. 2011;405(4-3):1004–1026.
Curr Opin Cell Biol. 2013;Aug 16 [epub ahead of print].
Genes Dev. 2008;22(16):2189–2203.
Lab Chip. 2013;13(4):714–721.
J Tissue Eng Regen Med. 2015 Jan 30. doi: 10.1002/term.1985
Infect Immun. 2015 May 26. pii: IAI.00479-15.
Nat Commun. 2013;4(2252).
J. Cell. Sci. 2010;123(24):4201–4213.
FEBS J. 2013; June 27 [epub ahead of print].
J Clin Invest. 2013; Mar 15 [epub ahead of print].
Curr Biol. 2014 Aug 4;24(15):1743-50. doi: 10.1016/j.cub.2014.06.019. Epub 2014 Jul 24.
Cell Cycle. 2014;13(17):2733-43. doi: 10.4161/15384101.2015.945831
EMBO J. 2014 Aug 18;33(16):1815-30. doi: 10.15252/embj.201488147. Epub 2014 Jul 4.
J Cell Sci. 2014 May 1;127(Pt 9):1887-98. doi: 10.1242/jcs.135780. Epub 2014 Feb 4.
J Biomater Tissue Eng. 2013;3(4):461–471
Nat Commun. 2014 Jun 6;5:4080. doi: 10.1038/ncomms5080.
Cell Cycle. 2014;13(11):1727-36. doi: 10.4161/cc.28630. Epub 2014 Mar 26.
Microbes Infect. 2012; Nov 02 [epub ahead of print].
PLoS One. 2015 Jun 12;10(6):e0127330. doi: 10.1371/journal.pone.0127330. eCollection 2015.
Nat. Methods. 2010;7(7):560–566.
PLoS ONE. 2012;7(9):e46265.
Nat Protoc. 2015 Jan;10(1):75-89. doi: 10.1038/nprot.2014.200. Epub 2014 Dec 11.
IntraVital. 2012;1(1):77-85.
J. Cell. Sci. 2012;125(9):2134–2140.
Nature. 2011;474(7350):179–183.
Cell Death Dis. 2014 May 22;5:e1235. doi: 10.1038/cddis.2014.209.
Nat Methods. 2014 Aug;11(8):841-6. doi: 10.1038/nmeth.3025. Epub 2014 Jul 6.
J. Cell. Sci. 2011;124(22):3884–3893.
J. Biochem. Cell Biol. 2012;44(6):980–988.
J Cell Sci. 2019 Jan 18. Pii:jcs.222851.
In order to guarantee a constant quality as well as a long shelf life for our products, CYTOOchips are packaged by 6 in a blister pack sealed in an aluminum bag under inert gas.
The average turnaround time for production is 4-5 weeks.
The CYTOOchips should be stored at 4°C and used before the expiry date indicated on the packaging (6 months from the production date).
Stability is guaranteed for at least 3 months from the date of shipment when stored at 4°C in its original packaging.